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This paper will discuss two-dimensional distributed transducer shape and shading and
their implications for the active control of plates. Two-dimensional transducer shaping is
shown to be a useful design tool for the control problem. In addition, transducer shaping
can be combined with gain-weighting to provide close approximation of continuously
shaded transducer distributions. An optimization method is described which can be used
to fit the approximation to a continuous distribution. The analysis is applied to two
examples of transducers used to control a rectangular, simply-supported plate. The first
relies on shaping alone and is shown to spatially filter out the even-even modes. The second
was developed using the optimization technique and is shown to provide ‘‘all-mode’’
controllability and observability.
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1. INTRODUCTION

Several researchers have examined the use of distributed transducers for the active control
of two-dimensional structures [1–3]. The possible applications include both vibration
suppression and acoustic radiation attenuation. The primary advantage of distributed
transducers is that they can be shaded by varying their gain over their spatial extent.
Through the application of shaded transducers, the transducer-augmented forward-loop
transfer function can be altered so as to achieve desired temporal and spatial performance
goals [4]. This paper describes methods for achieving two-dimensional transducer shading
using two-dimensionally shaped transducers.

Prior work by the authors [5] has included the development of an analytical method for
modelling two-dimensionally shaped transducers. The method will be used in this paper
to aid in the design of two-dimensional transducer distributions for the active control of
plates. Because the method is analytical, much insight is obtained into the physics of the
interaction between the shaped transducer and mode shapes in a plate.

Shaped sensors and actuators have previously been utilized for mode targeting, loop
shaping, and for all-mode sensing and control for beams [6–12]. Because these transducers
were applied to beams, no transverse modes of vibration were present, and the shapes were
good approximations of continuous, one-dimensional shading. Burke and Hubbard [6] and
Miller and Hubbard [7] developed a design methodology for shaded transducers to
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accomplish all-mode sensing and control for beams with arbitrary combinations of
boundary conditions. They verified these techniques using shaped PVDF actuators and
sensors [7, 8]. Lee and Moon [9] and Lee et al. [10, 11] demonstrated modal damping in
beams using shaped PVDF transducers. Miller et al. [12] reviewed the use of shaped PVDF
sensors used to create desired spatial filtering properties for beams.

Clark and Fuller [3, 13], Clark et al. [14], and Burke and Clark [15] investigated shaped
sensors for sensing acoustically significant modes in plates. However, these were also
shapes which were designed to be good approximations to continuous one-dimensional
shading. Even though these shaped transducers were applied to plates, their width was
small in comparison with the smallest transverse wavelength present in the plate’s dynamic
response. However, errors in the placement of these sensors can lead to coupling with
undesired modes in experimental implementations [15].

The location and size of unshaded rectangular actuators have been studied by
Dimitriadis et al. [16] for structural acoustic control of plates. Shaping a distributed
transducer into a non-rectangular shape is actually a form of two-dimensional shading:
the gain is varied discontinuously over two-dimensions. Transducer shaping alone can
provide useful modal coupling for plates. Burke and Hubbard [2] have extended the
concept of continuous shading for beams to plates. Their work theoretically demonstrated
that all-mode sensing and control could be achieved for plates through the use of
continuous, two-dimensionally shaded transducers. While one-dimensional shading for
beams and structural beam components can be easily approximated using shaped
distributed transducers, the practical realization of two-dimensional shading in distributed
transducers for plates is more difficult. A potential method outlined in this paper uses a
superposition of gain-weighted, shaped transducers.

In this paper, two-dimensional transducer shading and its implications for the active
control of thin plates are discussed. Candidate methods of producing shaded transducers
are also reviewed. Two-dimensional transducer shaping is presented as a useful design tool
for the control problem. A method is described for approximating continuously shaded
transducer distributions with a combination of transducer shaping and spatial
gain-weighting. Wavenumber transforms are also used to evaluate controllability and
observability. An optimization method used to fit the shaped transducer approximations
to a continuous transducer distribution over a specified number of modal coefficients is
then detailed. The analysis is applied to two specific examples. Both consider rectangular
plates with simply-supported boundary conditions. The analysis of simply-supported
plates provides insight for many classes of panel vibration problems [17].

One example utilizes two-dimensional transducer shaping and mode targeting alone to
establish controllability and observability over all but the even–even modes in a
simply-supported plate. This transducer distribution is a very practical solution for the
acoustic radiation attenuation problem. The second distribution is a superposition of

Figure 1. Uniform transducer distribution.
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Figure 2. Resultant control input/sensed output for uniform transducer distribution.

gain-weighted, shaped transducer sections, which provide a good approximation to a
continuous two-dimensionally shaded transducer distribution. This distribution provides
‘‘all-mode’’ controllability and observability over a large bandwidth and is therefore useful
for global vibration suppression.

2. ANALYSIS

2.1.   

To understand the utility of two-dimensional shaded transducers for plates, one must
first examine the limits that uniformly-weighted distributed transducers place on
controllability and observability for plates. The following discussion is a review of the plate
control study by Burke and Hubbard [2]. Consider the transducer distribution, L(x, y),
laminated to a rectangular, simply supported plate shown in Figure 1. The transducer is
assumed to be an induced-strain type such as piezopolymer film (PVDF) or a piezoceramic
crystal (PZT). This distribution is even-symmetric about both centerlines, x= a/2 and
y= b/2. If the material axes of this transducer are coincident with the axes of the plate,
then the resultant control input/sensed output for the plate is shown in Figure 2.
Distributed doublet functions are obtained along the entire boundary. If the transducer
were used as an actuator, these would correspond to uniform distributed bending
moments. If the transducer were used as a sensor, it would be able to sense uniform angular
displacement along the boundary.

The inherent even–even symmetry of the unshaded distribution limits the efficacy of this
transducer when used as either a sensor or an actuator. Consider the 2–1 mode and 2–2
modes of a simply-supported plate as shown in Figure 3 and Figure 4, respectively.
Whenever the angular velocity distributions along opposing sides of the plate are equal,
the unshaded transducer cannot do work or sense any motion in the direction normal to
those sides. This occurs along sides x=0 and x= a in Figure 3. Whenever the integrated
angular velocity distributions along opposing sides of the plate are zero, the same result
will hold. This is true for sides y=0 and y= b in Figure 3 and for all sides in Figure 4.
Thus, this unshaded rectangular distribution will not be able to control or sense modes

Figure 3. 2,1 mode of simply-supported plate (— —, nodal line).
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Figure 4. 2,2 mode of simply-supported plate (— —, nodal line).

with odd–even, even–odd, or even–even symmetry. If this transducer were reduced in size
but remained centred on the plate, it would still lack both controllability and observability
for these modes.

By spatially varying the input/output characteristics of the transducer, i.e., by shading
it, this symmetry problem can be resolved [2]. Shading the transducer in two dimensions
gives it the different types of symmetry required to sense and control all modes of the
simply supported plate. An example of a shaded transducer distribution is shown in
Figure 5. Note that the amplitude of the transducer distribution varies continuously over
the surface of the plate. The transducer is shaded over two dimensions such that the gain
is at a maximum, Lmax, at one corner, (x, y)= (0, 0), but decreases linearly to zero in both
the x and y directions. Thus, this transducer distribution has both even and odd symmetry
about each of the centre lines, x= a/2 and y= b/2.

The resultant control input/sensed output for the simply-supported plate is shown in
Figure 6. In contrast to the uniform transducer distribution, the induced moments/sensed
angular velocity distributions are now only present on two adjacent sides of the plate,
x=0 and y=0, and are weighted to decrease linearly from a maximum at the point (0, 0)
to zero at the points (a, 0) and (0, b). This distribution can control and sense the modes
that the uniform distribution could not. Because the moments occur only along x=0 and
y=0, the cancellation due to equal angular velocity distributions along opposing sides of
the plate is avoided. In addition, due to the weighting of the moments along each side,
it is possible to sense modes where the integrated angular velocity along a side of the plate
is zero. Thus, all of the modes which could be present in a simply-supported plate can be
controlled and sensed using the shaded distribution.

The above discussion used a simply-supported plate and a specific two-dimensional
transducer shading as an example. However, two-dimensional shaded transducer
distributions can be designed so as to exhibit all-mode sensing and control in plates with
arbitrary boundary conditions [2]. When combined with a feedback controller such as
velocity feedback, this is very beneficial for the problem of global vibration suppression

Figure 5. Continuously shaded transducer distribution.
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Figure 6. Resultant control input/sensed output for continuously shaded transducer distribution.

in plates. To enhance stability robustness and increase performance, the shading can also
be tailored so as to couple evenly into modes within a certain bandwidth and then roll-off
for higher frequency modes. Thus, the system can be compensated spatially, through
tailoring of the modal coefficients, to more effectively deal with temporal phase lag
problems associated with real hardware such as analog filters and power supplies. That
is the real benefit of shading: to be able to change the spatial filtering characteristics of
an elastic system to improve both stability and performance [4].

Another benefit of two-dimensional shading is in the design of transducers to control
and sense only acoustically significant modes in panels. Sensing of acoustically significant
modes in simply-supported plates has been studied previously using one-dimensionally
shaded sensors [3, 13–15], but with two-dimensional shadings, the work can be expanded
to develop both actuator and sensor distributions for plates with other boundary
conditions. In these cases, the spatial filtering properties of plates can be changed so as
to move energy from acoustically significant modes into those modes which are inefficient
sound radiators.

2.2.    -  

The previous section reviewed the definition of two-dimensional shading and considered
the benefits of shading from a physical standpoint. In the following discussion, the
concepts will be formalized by examining the means for implementing shading using
piezopolymer film (PVDF). This material is quite useful for producing two-dimensional
shaded transducer distributions. It is tough and flexible, and can be laminated over large
surface areas. The electrode plating of the material can be manufactured with unique
shapes, or the material can be cut to the desired shape.

The differential operator describing the spatial dynamics of piezopolymer film (PVDF),
with the possibility of a skew angle, u, between the transducer and structure axes, is given
by Lee and Moon [1]:

L[L(x, y)]= e0
31

12L(x, y)
1x2 + e0

32
12L(x, y)

1y2 + e0
36

12L(x, y)
1x1y

, (1)

with

&e
0
31

e0
32

e0
36'= & cos2 u

sin2 u

cos u sin u

sin2 u

cos2 u

−cos u sin u

−2 cos u sin u

2 cos u sin u

cos2 u−sin2 u'
× & Yp /(1− n2

p )
npYp /(1− n2

p )
0

npYp /(1− n2
p )

Yp /(1− n2
p )

0

0
0

Yp /[2(1+ np )]'&d
0
3'1'

d 0
3'2'

0 ', (2)



. .   .478

where e0
31, e0

32, e0
36 represent the piezoelastic stress/charge constants with respect to the

structure axes; d 0
3'1', d 0

3'2' are the piezoelectric strain/charge constants with respect to the
PVDF material axes; and Yp , np are the Young’s modulus and Poisson ratio, respectively,
of PVDF.

Both the actuator and sensor equations for PVDF laminated to a thin plate are
based upon this differential operator. The skew angle, u, can be varied to change the
values of the stress/charge constants. These constants weigh each partial differential
term in the operator but cannot change the characteristics of the resultant
terms of the operator. The characteristics of the resultant terms of the operator are
affected only by the distribution function, L(x, y), that is included under partial
differentiation.

The spatial distribution of the transducer, L(x, y), can be separated into two
functions:

L(x, y)=F(x, y)P0(x, y), (3)

where F(x, y) describes the shape of the PVDF and is defined as being equal to one within
the transducer boundary and zero otherwise. P0(x, y) is the polarization profile of the
PVDF and is assumed to be unity for film which has not been repolarized after
manufacture.

One may vary the piezopolymer gain over two-dimensions by spatially varying either
L(x, y) or the electric field applied to the PVDF. It is possible to spatially weight the
electric field used to pole the material during manufacture. This would affect
the piezoelectric properties of the material, represented in the operator equation by the
strain/charge constants. It is also possible to affect the polarization after manufacture
by repoling (or depoling) the material with another strong electric field. Lee and
Moon have accounted for this process with the P0(x, y) function which represents the
polarization profile of the film. Hence, the material would arrive from the factory with
certain values for the strain/charge constants which were constant over the extent of the
film. The P0(x, y) would be equal to one for all (x, y). By applying a strong electric field
to change the polarization profile, the overall effect in the operator would be to scale the
piezoelectric properties of the film with respect to the factory values of the strain/charge
constants.

Thickness variations in either the plate or the film can also cause shading. Thickness
variation in the film will change the applied electric field because the electric field is equal
to the voltage applied to the film electrodes divided by the film thickness. Thickness
variation in the bonding layer, or in an added shim, will change the moment arm of the
transducer relative to the center plane of the plate.

Another way to change the spatial distribution of the film would be to change its
electrode shape F(x, y). Non-rectangular shapes can be used to achieve desired shading
effects in much the same way that shaped electrodes have been used for beam problems.
However, shaping the film does not continuously change its gain over space. The film will
have unit magnitude gain within the shape boundary and zero magnitude outside of the
boundary.

During actual use, one can vary the electric field applied to the PVDF. One way to do
this is to vary the voltage applied to the electrodes over space by gain-weighting transducer
subsections. This technique, combined with varying the transducer’s electrode shape, can
be used to approximate a two-dimensional shading. Of the various techniques described
in this section, transducer shaping and gain-weighting are the most practical for
implementing two-dimensional shading. These techniques will be described in more detail
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in the next section and sample distributions will be presented which possess useful spatial
filtering properties.

2.3.  :      

To evaluate possible methods of shading the distribution of PVDF film, one can study
the resultant effects of shading on modes of vibration in plates. Consider the free response
of a Bernoulli–Euler plate. The response can be expressed as a sum of orthogonal modes
separable in space and time:

w(t, x)= s
a

n=1

wn (t)8n (x) (4)

where n is the mode number, wn (t) is a harmonic function of time with natural frequency,
bn , and 8n is the modal shape.

Burke and Hubbard [2] used Lyapunov functionals to assess the impact of shading on
controllability and observability for plates, but similar results can be derived by
examination of the actuator and sensor modal coefficients. The use of modal coefficients
is better suited for the study of complex two-dimensional transducer distributions because
information about the plate modal symmetry is taken into account in their calculation.
The nth modal coefficient for a two dimensional transducer applied to a plate of domain,
D, is given by [2, 18]

bn = cn =gD

8n (x)L[L(x)] dx. (5)

The nth actuator modal coefficient for the transducer, bn , shows how the transducer, when
used as an actuator, couples into individual modes of vibration. Conversely, the sensor
modal coefficient, cn , shows how well the transducer, when used as a sensor, senses
individual modes. The modal coefficients characterize the impact of shading on plates and
can serve as a measure for shading approximations. Note that the value of this modal
coefficient depends upon the plate mode shape 8n (x), the transducer spatial distribution
L(x, y), and the differential operator describing the transducer’s spatial dynamics, L[.]. For
illustrative purposes, assume that the plate under consideration is simply-supported along
all sides. This allows the mode shapes to be separated into one-dimensional sinusoids in
x and y,

8n (x)=8r (x)8q (y)=Arq sin (rpx/a) sin (qpy/b), (6)

where Arq is determined by normalization of the mode shapes. If a mass or stiffness
normalization is used, then this value is a constant for all modes and it will therefore be
neglected in the rest of the analysis. These mode shapes will be used in the following
analysis to calculate modal coefficients for a variety of transducer spatial distributions.

In previous work by the authors [5], arbitrary two-dimensional transducer distributions
were modelled using two-dimensional step functions with composite functions included in
the arguments. The theory needed to calculate the PVDF differential operator acting on
these distributions was also developed. The arbitrary transducer shape shown in Figure 7
can be represented concisely by

L(x, y)= (�x− x2�0 − �x− x1�0)(�y− f2(x)�0 − �y− f1(x)�0). (7)

Macauley notation [19] is used to represent the step functions. For example, �x− a�0

represents a step function h(x− a), which begins at x= a. The derivative with respect to
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Figure 7. Arbitrary transducer shape in rectangular co-ordinates.

x of this function is given by �x− a�−1. This is the delta function d(x− a), at x= a. The
partial derivatives needed to calculate the PVDF differential operator acting on the
distribution are given by

1L(x, y)
1x

=(�x− x2�−1 − �x− x1�−1)(�y− f2(x)�0 − �y− f1(x)�0)

+ (�x− x2�0 − �x− x1�0)(−f '2 (x)�y− f2(x)�−1 + f '1 (x)�y− f1(x)�−1), (8)

1L(x, y)
1y

=(�x− x2�0 − �x− x1�0)(�y− f2(x)�−1 − �y− f1(x)�−1). (9)

Equations (7)–(9) allow for concise modelling of the transducer distribution and the
piezoelectric differential operator. The second derivatives are given in Sullivan et al. [5].
The use of generalized functions for the mathematical representation of the distribution
and the operator allows the modal coefficients to be calculated analytically. These tools
will be used in the following section to examine the effects of transducer shading.

3. TWO-DIMENSIONAL TRANSDUCER DESIGN

3.1. , - 

Using the mathematics developed in the preceding section, it is possible to analytically
represent transducer distributions and to calculate their modal coefficients when applied
to thin plates. Referring to the two-dimensional shaded distribution described in section
2.1 and pictured in Figure 5, the spatial distribution for this continuous, linearly-weighted
shading can be represented by

L(x, y)= (�x�0 − (1/a)�x�1 + (1/a)�x− a�1)(�y�0 − (1/b)�y�1 + (1/b)�y− b�1). (10)

The linear weighting in two dimensions is described by the ‘‘ramp’’ generalized
functions. The differential operator result for this distribution is given by

L[L(x, y)]= e0
31(�x�−2 − (1/a)�x�−1 + (1/a)�x− a�−1)(�y�0 − (1/b)�y�1

+ (1/b)�y− b�1)+ e0
32(�x�0 − (1/a)�x�1 + (1/a)�x− a�1)(�y�−2

− (1/b)�y�−1 + (1/b)�y− b�−1). (11)

This result includes weighted delta functions along the boundaries. For a
simply-supported plate, these will vanish due to the pinned boundary conditions. Thus,
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the result given in equation (11) can be simplified by dropping these terms and pulling out
the linear weighting from the generalized functions to yield,

L[L(x, y)]= e0
31(1− (y/b))�x�−2(�y�0 − �y− b�0)

+ e0
32(1− (x/a))�y�−2(�x�0 − �x− a�0). (12)

This equation includes the linearly-weighted doublet functions along the sides x=0 and
y=0, shown in Figure 6. The nth modal coefficient is calculated by substituting equations
(6) and (12) into equation (5) and integrating in x and y to give

bn = e0
31(r/q)(b/a)+ e0

32(q/r)(a/b). (13)

The integration of the transducer distribution with the modal shape results in the
weighted slope of the modal shape being sifted out along the two sides and then integrated
over the length of the sides. As can be seen from equation (13), the modal coefficient
derived for this shaded transducer will be non-zero for all r and q. Thus, both
controllability and observability are guaranteed whether the transducer is used as an
actuator or a sensor.

This shading would prove useful for controlling vibrations in simply-supported plates
because of its all-mode actuation and sensing properties. Unfortunately, it is difficult to
effect this shading directly. The methods described in section 2.2. are very difficult to
manufacture. One method, however, that can be implemented is an approximation of the
shading using a sum of gain-weighted transducer sections. Trying to approximate a
two-dimensional shading such as that shown in Figure 5 using a two-dimensional array
of rectangular sections would be difficult because of the large number of sections that
would be needed. The number of transducer sections needed to provide a good
approximation could be reduced if the transducer shape was used to aid in the
approximation.

3.2.  :  

Triangular-shaped transducers can be used to capture part of the linear ramp function
present in the continuous shading. As a first step at approximating the continuous,
linearly-weighted transducer distribution shown in Figure 5, consider the triangular
distribution shown in Figure 8.

This distribution, like the linearly-weighted shading, is at a maximum at the origin and
decreases to zero along both x and y through the decrease of surface area covered by the
transducer. Using two-dimensional distributions with composite functions in the
arguments, the transducer distribution is represented by

L(x, y)= (�x�0 − �x− a�0)(�y�0 − �y+(b/a)x− b�0). (14)

Figure 8. Triangular transducer distribution.
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Figure 9. Resultant control input/sensed output for triangular transducer distribution.

The differential operator result is given by

L[L(x, y)]= e0
31(�x�−2 − �x− a�−2)(�y�0 − �y+(b/a)x− b�0)

+ (�x�0 − �x− a�0)[e0
32�y�−2 − ((b2/a2)e0

31 + e0
32)�y+(b/a)x− b�−2]

−2(b/a)e0
31(�x�−1 − �x− a�−1)(�y+(b/a)x− b�−1), (15)

and is shown in Figure 9. Because the weighting is uniform within the shape boundary,
the operator results in uniform doublet functions along the transducer boundary. Delta
functions were also obtained at the vertices, but these were eliminated due to the
simply-supported boundary conditions for the plate under consideration. The modal
coefficients that arise from this distribution will be the sum of line integrals of the modal
slope along boundaries x=0, y=0 and along the hypotenuse of the triangle. The modal
coefficients that result from the application of this distribution to a simply-supported plate
are given by,

bn = e0
31(r/q)(b/a)[(−1)q −1]+ e0

32(q/r)(a/b)[(−1)r −1]

+
qp

b 0b2

a2 e0
31 + e0

321(−1)q g
a

0

sin (rpx/a) cos (qpx/a) dx. (16)

The first two terms show the result of the doublet functions acting along sides x=0
and y=0. Along x=0, whenever q is even, the line integral along this side is zero. The
result of the doublet functions acting along the hypotenuse is shown in the last term of
equation (16). The calculation of this integral depends upon whether r= q:

g
a

0

sin (rpx/a) cos (qpx/a) dx=0, (r= q), (17)

g
a

0

sin (rpx/a) cos (qpx/a) dx=−(a/2p){(1/(r− q))[(−1)r− q −1]

+ (1/(r+ q))[(−1)r+ q −1]}, (r$ q). (18)

Figure 10. Triangular distribution shown with 2,2 mode (— — nodal lines).
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Figure 11. Triangular distribution shown with 3,3 mode (— — nodal lines).

Whenever r= q, the line integral along the hypotenuse will be zero. When r= q=even,
as in Figure 10, the line integrals along x=0 and y=0 are also zero so the modal
coefficient sums to zero. However, when r= q=odd, as shown in Figure 11, the line
integrals along x=0 and y=0 are both non-zero so the modal coefficient for this case
is non-zero. The reason for the zero line integral along the hypotenuse, however, can be
seen by examining both Figures 10 and 11 and noting that each ‘‘+ ’’ or ‘‘− ’’ rectangular
section acts like a smaller plate in the 1–1 mode. Whenever the transducer hypotenuse
extends from one corner of the ‘‘+ ’’ or ‘‘− ’’ section to another, the line integral along
this section will be zero. The distribution sifts out the slope of the mode shape along the
hypotenuse and legs of the triangle. The contribution of the hypotenuse to the modal
coefficient will be zero whenever the slope along the hypotenuse integrates to zero over
the length of the plate.

For r and q not equal and both odd, the line integrals along all sides will be non-zero.
For r and q not equal and either r or q is even, as shown in Figure 12, the line integral
along one of the sides of the plate will be zero but the integral along the hypotenuse will
be non-zero. For r and q not equal, but both even, all of the line integrals, and hence the
modal coefficient, will be zero. This can be seen in Figure 13. The reason for the zero line
integral along the hypotenuse in this case is due to the way the hypotenuse cuts through
the sections between the nodal lines. The line integrals from the two ‘‘− ’’ sections
intersected by the hypotenuse sum to zero as do the line integrals from the two ‘‘+ ’’
sections that are intersected.

This shaped transducer distribution can control or sense the odd–odd, odd–even, and
even–odd modes of a simply supported plate. It cannot, however, control or sense any of
the even–even modes of a simply-supported plate. This makes the distribution very useful
for the acoustic radiation attenuation problem because the odd–odd modes are the most
efficient acoustic radiators while the odd–even and even–odd modes radiate sound to a
lesser extent, and the even–even modes do not contribute significantly to the radiated
sound field [3]. This transducer can be used to form a colocated sensor/actuator pair which
will only sense and do work on those modes which have a significant contribution to the
radiated sound field.

Figure 12. Triangular distribution shown with 2,1 mode (— — nodal lines).
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Figure 13. Triangular distribution shown with 4,2 mode (— — nodal lines).

3.3. -   - 

If global vibration suppression of a simply supported plate is desired, the triangular
distribution will not suffice. The previous analysis shows that using shape to approximate
shading in two-dimensions is more difficult than using it to approximate shading for
beams. The two-dimensional linear shading is necessary to provide global controllability
and observability. It is possible to approximate this shading for a large number of modes
using an array of gain-weighted, shaped transducers as shown in Figure 14. This
distribution is a sum of smaller distributions which are gain weighted. The distribution
linearly decreases in the x direction due to the triangular shaping and decreases by steps
in the y direction because of the gain-weighting.

The differential operator result of this distribution is shown in Figure 15. Doublet
functions are obtained along the boundaries of the transducer sections but their
magnitudes vary from section to section depending upon the gain that is given to each
section. In the figure, for clarity, the doublet functions along the sides are represented by
a resultant doublet function acting on the middle of the side.

The modal coefficients for the linearly-weighted shading are given by equation (13). To
determine the best approximation, the modal coefficients of the gain-weighted array of
transducer sections can be calculated and compared to those of the linearly-weighted
shading.

The transducer distribution, L(x), of a gain weighted array is the sum of the individual
transducer distributions of the sections (with the gains of the sections included in each
distribution):

L(x)= s
S

s=1

Ls (x), (19)

where S is the total number of sections used in the approximation. The nth modal
coefficient for the transducer distribution is given by the sum of the nth modal coefficients
calculated for each section,

bn = s
S

s=1 gD

8n (x)L[Ls (x)] dx= s
S

s=1

bn,s . (20)

The geometry of a triangular section to be used in the array is shown in Figure 16. Each
section is an isosceles triangle with a length equal to the total length of the plate, a. Note
that the use of an asymmetric triangle section would yield even better controllability and
observability results. The section’s spatial distribution is given by

Ls (x, y)= gs (�x�0 − �x− a�0)(�y−msx− vl
s�0 − �y+msx− vh

s �0), (21)
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Figure 14. Approximation of two-dimensional linear shading.

where gs is the gain assigned to the section,

gs =−((vl
s + vh

s )/2) (Lmax/b)+Lmax. (22)

This section gain is chosen such that the midpoint of the transducer section intersects
a line defining the ideal gain over the plate width as shown in Figure 17.

Again, the differential operator acting on this distribution will produce doublet functions
lining the boundary,

L[L(x, y)]= e0
31(�x�−2 − �x− a�−2)(�y−msx− vl

s�0 − �y+msx− vh
s �0)

+ (m2
s e0

31 + e0
32)(�x�0 − �x− a�0)(�y−msx− vl

s�−2 − �y+msx− vh
s �−2)

−2mse0
31(�x�−1 − �x− a�−1)(�y−msx− vl

s�−1 + �y+msx− vh
s �−1).

(23)

Their magnitude is uniform along each side because the gain of the section is constant
over its spatial extent. Delta functions are also obtained at the vertices, but these disappear
due to the pinned boundary conditions.

The modal coefficient for this section is

bn,s = gs $cos 0qpvh
s

b 1−cos 0qpvl
s

b 1%×6e0
31(r/q)(b/a)+ 1

2(m
2
s e0

31 + e0
32)

×0qp

b 1$0rpa +
qpms

b 1
−1

+0rpa −
qpms

b 1
−1

%7. (24)

The modal coefficient for the section will equal zero whenever a nodal line in x bisects the
triangle. In this case, an example of which is shown in Figure 18 for q=2 and S=1, the
midpoint between vh

s and vl
s is equal to bj/q where j is any integer. This relationship causes

the first two cosine terms on the right side of equation (24) to be equivalent and their
difference to thus be equal to zero. So, when different transducer sections of equal widths

Figure 15. Resultant control input/sensed output of linear two-dimensional shading approximation.
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Figure 16. Triangular transducer section geometry.

are added together, even with different gains, as shown in Figure 19, cancellation occurs
when q=2S for all r. Because of this cancellation, one must employ unequal segment
widths to change the inherent symmetry.

As an aside, the last term in equation (24) appears to go to infinity when ms = b/(2Sa)
and q=2Sr. The slope condition occurs whenever the sections have equal widths or
whenever there is only one section. This can be seen from Figure 18. In this case,
ms = b/(2a) and this term appears to go to infinity. However, using L’Hospital’s rule, it
can be shown that, when q=2Sr and the slope approaches b/(2Sa), this term is
well-behaved and goes to zero.

The benefit of using unequal widths in the approximation becomes apparent when the
spatial Fourier transform is applied to the problem. It is possible to separate the problem
into x and y components because of the plate’s simply-supported boundary conditions.
Examination of the y component will help determine the controllability/observability
characteristics of the transducer distribution because the step approximation occurs along
this direction. Imagine taking a slice of the transducer distribution along the line x=0.
The transducer distribution will look like a staircase function in this case. One will be
comparing this function to that shown as the ideal function, the gain of the linear
two-dimensional distribution, shown in Figure 17. Using this transform method involves
less analysis than calculating the modal coefficients for each transducer distribution as a
whole. Thus, it provides a useful tool for the evaluation of the controllability/observability
properties of candidate distributions. The Fourier transform of the PVDF operator acting
on the y component of a transducer distribution, L[L(y)] is given by,

h(k) =
1

z2p g
b

0

L[L(y)]eiky dy, (25)

where the limits of integration are reduced from (−a, +a) to [0, b] because the
transducer distribution is bounded by the width of the plate, b. The spatial variable k is
the wavenumber component in the y direction.

Figure 17. Transducer section gain weighting.
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The magnitude of the imaginary part of the transform is given by

himag (k)= bg
b

0

L[L, (y)] sin (ky) dyb. (26)

This is equivalent to the expression for the y component of the nth modal coefficient when
k= qp/b. Examination of this part of the transform is relevant to assessing the impact of
the distribution on the plate mode shapes. Simply looking at the entire Fourier transform
would not be useful because plate modal information would not be taken into account.
Since the imaginary part of the transform is a continuous version over k of the
y-component of the modal coefficient equation, the information obtained can be used to
determine controllability and observability characteristics of the transducer acting on the
simply-supported plate.

First, consider the ideal distribution in y shown in Figure 17. This distribution can be
represented by

L(y)= �y�0 − (1/b)[�y�1 − �y− b�1]. (27)

The PVDF operator acting on this distribution is given by

L[L(y)]= �y�−2. (28)

The point forces have been eliminated due to the boundary conditions leaving only a
positive moment at y=0. The Fourier transform for this case is

h(k)=−ik. (29)

Since the transform is purely imaginary, the magnitude of the imaginary component is
simply k and is thus non-zero for all k. Thus this ideal distribution has all-mode
controllability and observability.

Now consider the case of an individual transducer section used in an approximation of
the ideal distribution. The y component of the transducer distribution given in equation
(21) along the line x=0 is given by

Ls (y)= (�y− v1
s �0 − �y− vh

s �0). (30)

The PVDF operator acting on this individual section distribution is

L[Ls (y)]= gs (�y− v1
s �−2 − �y− vh

s �−2). (31)

This result shows doublet functions (or moments) acting in opposition at the ends of the
section. The Fourier transform of (31) is

h(k)=−ikgs (eikvl
s − eikvh

s ). (32)

Figure 18. Transducer section shown with 1,2 mode (— — nodal line).
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Figure 19. Equal width transducer sections shown with 1,4 mode (— — nodal line).

The magnitude of the imaginary component is

himag (k)= =kgs[cos (kvl
s)− cos (kvh

s )] =. (33)

From this equation, it is evident that whenever a nodal point occurs at the midpoint of
the transducer section, no matter how large or small the section, a zero result will be
obtained for the imaginary component of the Fourier transform. The opposing doublet
moments produced by the transducer distribution will not be able to do any work or sense
any angular displacement because of the symmetry involved. Thus, the particular mode
for which this occurs will not be controllable or observable.

The following plots illustrate this point and also demonstrate the benefit of using
sections with unequal widths. The first two plots, shown in Figure 20, show an
approximation to the ideal distribution using only two sections of equal width and the
imaginary part of the Fourier transform of such a distribution. The even modes, occurring
at k=2p/b, 4p/b, 6p/b, . . . , are marked with an ‘‘x’’ on the wavenumber transform plot.
The transform of the ideal distribution is shown with a dotted line while the transform
of the approximation is shown with a solid line. The zeros of the approximation occur

Figure 20. (a) Equal width section approximation shown as shaded boxes with overlay of second mode (——)
and fourth mode (- - - -), (b) wavenumber sine transform of equal width section approximation (——) and of
ideal distribution (- - - -) shown with even mode wavenumbers (× ).
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Figure 21. (a) Reduced width section approximation shown as shaded boxes with overlay of second mode (——)
and fourth mode (- - - -), (b) wavenumber sine transform of reduced width section approximation (——) and of
ideal distribution (- - - -) shown with even mode wavenumbers (× ).

at every other even mode beginning with k=4p/b. Thus, this approximation to the ideal
distribution can control/observe the first three modes of the plate, k= p/b, 2p/b, and 3p/b
before reaching a zero for the fourth mode. The mode shapes of the second and fourth
mode are shown in the top plot. Since the transducer sections have different gains, the
second mode is controllable. However, the fourth mode is not controllable because it has
nodal points which occur in the middle of each transducer section.

The next two plots, pictured in Figure 21, show that the same results are obtained when
the width of the sections is reduced, but the midpoints are kept at the same location. In
this case, the widths were reduced by the same amount, but the result would be the same
even if they were of unequal width. Since the midpoints of each section are the same, they
will still lack the asymmetry needed to control or observe the fourth mode.

The final plots in Figure 22 demonstrate improved controllability/observability
characteristics using transducer sections with different widths and midpoints located in
different points. The result is that the first five modes are now controllable/observable using
only two transducer sections. On the transducer section plot, the solid line shows the mode
shape of the fourth mode and the dashed line shows the mode shape of the sixth mode.
It is not until the sixth mode, k=6p/b, that nodal points will occur at the midpoints of
the transducer sections.

The wavenumber transform analysis demonstrates that one can allow the section widths
to be degrees of freedom in an optimization problem that seeks to miminize the difference
between the ideal distribution and the approximation. The analytical method is also a
useful tool for understanding the physics of the transducer distribution’s interaction with
the plate mode shapes.

The design process can be reduced to a minimization problem with the following
quadratic objective function:

J= s
N

n=1

(bn,ideal − bn,approx (a))2 = >bideal − bapprox (a)>2, (34)
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Figure 22. (a) Unequal width section approximation shown as shaded boxes with overlay of fourth mode
(——) and sixth mode (- - - -), (b) wavenumber sine transform of unequal width section approximation (——)
and of ideal distribution (- - - -) shown with even mode wavenumbers (× ).

where the bideal vector corresponds to the modal coefficients of the continuous,
linearly-weighted shading and the bapprox vector corresponds to the modal coefficients of the
gain-weighted approximation. The vector a is composed of the section widths, as , of the
first S−1 sections. These are the independent variables in the minimization problem. The
width of the last section is a dependent variable because it is equivalent to the difference
between the width of the plate, b, and the sum of the first S−1 sections. Overlap between
sections is not allowed because this would complicate the optimization process and there
is no apparent benefit from doing this. Gaps between sections are not allowed because the
overall actuator authority or sensor sensitivity would be decreased. The number of
sections, S, and the number of modes, N, used in the optimization problem are both
parameters to be determined prior to minimization.

The number of sections is dependent upon the width of the plate, b, because too large
a number for a given plate width would yield section widths too small to be easily
fabricated or positioned on the plate. The number of modes, N, used in the optimization
problem should be large enough to include all modes within the control bandwidth. As
N becomes very large, however, it will become more difficult to obtain a good
approximation because more degrees of freedom are needed for the optimization. An
important consideration becomes the values of the modal coefficients outside the desired
bandwidth. This is because, in a real system, noise and phase lags can cause instability
in high frequency modes with strong modal coupling. When a global controller such as
velocity feedback is used, these modes can be destabilized. Thus, it is important to perform
the optimization over a certain number of modes N and then check the values of the modal
coefficients for the higher order modes.

All of the constraints for the problem relate to the geometry. The sections are chosen
to be isosceles triangles with length equal to the length of the plate. Each width must be
larger than a certain minimum width, amin , and this width must be greater than zero. All
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sections must touch on the x=0 side of the plate. Also, the total width of the sections
cannot exceed the width of the plate.

The objective function was written as a MATLAB function to be minimized by the
‘‘fmins’’ function included in the MATLAB toolbox. This function uses an unconstrained
non-linear optimization scheme to find the minimum of a function of several variables.
Most of the geometric constraints for this problem were written into the definition of the
objective function. Two constraints could not be included in this way: the minimum width
constraint and the total width maximum. They were included by heavily penalizing the
objective function when they were violated.

This research was concerned with matching an implementable distribution with an ideal
distribution that had known controllability and observability properties. However, the
analysis and optimization techniques can be applied to a more general case. One may
define a modal coefficient profile that has a desired shape in the wavenumber domain. For
example, if one is using a global controller such as velocity feedback, a desired profile
would include roll-off after a defined bandwidth. In this manner, the transducer would not
couple strongly into those modes for which the phase lags in the system summed to greater
than 90 degrees, thus facilitating a higher velocity feedback gain. This would allow spatial
compensation using distributed transducers to compensate for temporal phase lags in a
hardware implementation.

The ideal distribution would then be defined by the desired modal coefficient profile,
bideal , and the optimization process would attempt to match some unknown transducer
distribution to this profile. Since the geometry of the ideal distribution would be unknown,
the geometry of the approximation could be changed to allow more degrees of freedom.
For example, the plate could be divided up into a grid with a rectangular transducer section
assumed to be covering each grid section. The gain of each transducer section would be
allowed to vary between a minimum and maximum value. The gains of each section would
then become degrees of freedom used in the optimization problem. The optimization
process would then be exercised and the results examined to see if an inherent geometry
and symmetry exists. Then, suitable transducer shapes and gain-weighting could be applied
to the problem so that the number of transducer sections could be reduced. The
optimization process could take place again using a reduced number of degrees of freedom.
In this manner, it would be possible to achieve a desired modal coefficient profile using
a finite number of shaped, gain-weighted transducers.

4. DESIGN EXAMPLE

The design process for the approximation outlined in section 3.3. was applied to a
sample plate with a=0·671 m, b=0·469 m. Uniaxial PVDF film was used, with
d 0

3'1' = 23×10−12 C/N and d 0
3'2' = 3×10−12 C/N, Yp =2×109 N/m2, and vp =1/3. The

number of modes chosen over which to optimize was 10 and the number of sections chosen
was 5. The initial estimate for a was chosen such that all of the sections widths were equal.
The minimum width was 5 cm.

The minimization routine converged and the result was checked by starting from several
different initial estimates for the width vector. This was done to see if the minimum
obtained was local or ‘‘global’’ for the allowable range of widths. The resulting widths are
a=[8·2 6·4 11·0 10·4] cm. The resulting modal coefficients are compared to the
linearly-weighted ideal shading in Figure 23. The modal coefficients have been normalized
such that the largest has unit amplitude. The modal coefficients obtained for NQ 10 were
in excelllent agreement with those obtained for the linearly-weighted shading. The
percentage error is less than 1% for those with nQ 10. However, even for those modes
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Figure 23. Normalized modal coefficients of ideal (linear) shading and approximation: *, ideal; <,
approximated.

just outside of the control bandwidth, the percentage error is less than 10%. It is interesting
to note that the error was greatest for modes 13 and 15. For the given plate, these mode
numbers correspond to the 1,4 and 2,4 modes. These are the only two modes shown for
which q=4. The errors associated with these modes are large because they are the most
difficult to match due to the discrete gain-weighting approximation in the y direction.

The optimization results show that it is possible to obtain a close approximation to a
desired continuous two-dimensional shading using gain-weighted, shaped transducers.
This procedure can be extended to problems where it is desired to have the modal
coefficients fit a predetermined profile over mode number. One can envision such a profile
as having relatively equal modal coefficients within a certain bandwidth with those
coefficients outside of the bandwidth decreasing with increasing mode number. In this
manner, the gain of a feedback controller could be increased to control modes within the
bandwidth without destabilizing the modes outside of the bandwidth. This would allow
spatial compensation using distributed transducers to compensate for temporal phase lags
in a hardware implementation. Or, one might wish to target a small group of modes within
a certain frequency range.

5. CONCLUSIONS

The motivation for two-dimensional transducer shading was presented and various
methods for achieving shading were considered for the active control of thin plates.
Two-dimensional transducer shaping was shown to be a useful design tool for the control
problem. It was also shown that transducer shaping can be combined with gain-weighting
to provide close approximation of continuously shaded transducer distributions. The
analysis was applied to two specific examples. One utilizes two-dimensional transducer
shaping alone to establish controllability and observability over all but the even–even
modes in a simply-supported plate. This transducer distribution is a very practical solution
for the acoustic radiation attenuation problem. The second distribution is a superposition
of gain-weighted, shaped transducer sections providing a good approximation to a
continuous two-dimensional shaded transducer distribution. This distribution provides
‘‘all-mode’’ controllability and observability over a large bandwidth and is therefore useful
for global vibration suppression in plates. An optimization method used to fit the
approximation to the continuous transducer distribution over a specified number of modal
coefficients was described.
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